Open
Close

Некоторое вещество при обычных условиях является газом. Газообразные вещества: примеры и свойства

На сегодняшний день известно о существовании более чем 3 миллионов различных веществ. И цифра эта с каждым годом растет, так как химиками-синтетиками и другими учеными постоянно производятся опыты по получению новых соединений, обладающих какими-либо полезными свойствами.

Часть веществ - это природные обитатели, формирующиеся естественным путем. Другая половина - искусственные и синтетические. Однако и в первом и во втором случае значительную часть составляют газообразные вещества, примеры и характеристики которых мы и рассмотрим в данной статье.

Агрегатные состояния веществ

С XVII века принято было считать, что все известные соединения способны существовать в трех агрегатных состояниях: твердые, жидкие, газообразные вещества. Однако тщательные исследования последних десятилетий в области астрономии, физики, химии, космической биологии и прочих наук доказали, что есть еще одна форма. Это плазма.

Что она собой представляет? Это частично или полностью И оказывается, таких веществ во Вселенной подавляющее большинство. Так, именно в состоянии плазмы находятся:

  • межзвездное вещество;
  • космическая материя;
  • высшие слои атмосферы;
  • туманности;
  • состав многих планет;
  • звезды.

Поэтому сегодня говорят, что существуют твердые, жидкие, газообразные вещества и плазма. Кстати, каждый газ можно искусственно перевести в такое состояние, если подвергнуть его ионизации, то есть заставить превратиться в ионы.

Газообразные вещества: примеры

Примеров рассматриваемых веществ можно привести массу. Ведь газы известны еще с XVII века, когда ван Гельмонт, естествоиспытатель, впервые получил углекислый газ и стал исследовать его свойства. Кстати, название этой группе соединений также дал он, так как, по его мнению, газы - это нечто неупорядоченное, хаотичное, связанное с духами и чем-то невидимым, но ощутимым. Такое имя прижилось и в России.

Можно классифицировать все газообразные вещества, примеры тогда привести будет легче. Ведь охватить все многообразие сложно.

По составу различают:

  • простые,
  • сложные молекулы.

К первой группе относятся те, что состоят из одинаковых атомов в любом их количестве. Пример: кислород - О 2 , озон - О 3 , водород - Н 2 , хлор - CL 2 , фтор - F 2 , азот - N 2 и прочие.

  • сероводород - H 2 S;
  • хлороводород - HCL;
  • метан - CH 4;
  • сернистый газ - SO 2 ;
  • бурый газ - NO 2 ;
  • фреон - CF 2 CL 2 ;
  • аммиак - NH 3 и прочие.

Классификация по природе веществ

Также можно классифицировать виды газообразных веществ по принадлежности к органическому и неорганическому миру. То есть по природе входящих в состав атомов. Органическими газами являются:

  • первые пять представителей (метан, этан, пропан, бутан, пентан). Общая формула C n H 2n+2 ;
  • этилен - С 2 Н 4 ;
  • ацетилен или этин - С 2 Н 2 ;
  • метиламин - CH 3 NH 2 и другие.

Еще одной классификацией, которой можно подвергнуть рассматриваемые соединения, является деление на основе входящих в состав частиц. Именно из атомов состоят не все газообразные вещества. Примеры структур, в которых присутствуют ионы, молекулы, фотоны, электроны, броуновские частицы, плазма, также относятся к соединениям в таком агрегатном состоянии.

Свойства газов

Характеристики веществ в рассматриваемом состоянии отличаются от таковых для твердых или жидких соединений. Все дело в том, что свойства газообразных веществ особенные. Частицы их легко и быстро подвижны, вещество в целом изотропное, то есть свойства не определяются направлением движения входящих в состав структур.

Можно обозначить самые главные физические свойства газообразных веществ, которые и будут отличать их от всех остальных форм существования материи.

  1. Это такие соединения, которые нельзя увидеть и проконтролировать, ощутить обычными человеческими способами. Чтобы понять свойства и идентифицировать тот или иной газ, опираются на четыре описывающих их все параметра: давление, температура, количество вещества (моль), объем.
  2. В отличие от жидкостей газы способны занимать все пространство без остатка, ограничиваясь лишь величиной сосуда или помещения.
  3. Все газы между собой легко смешиваются, при этом у этих соединений нет поверхности раздела.
  4. Существуют более легкие и тяжелые представители, поэтому под действием силы тяжести и времени, возможно увидеть их разделение.
  5. Диффузия - одно из важнейших свойств этих соединений. Способность проникать в другие вещества и насыщать их изнутри, совершая при этом совершенно неупорядоченные движения внутри своей структуры.
  6. Реальные газы электрический ток проводить не могут, однако если говорить о разреженных и ионизированный субстанциях, то проводимость резко возрастает.
  7. Теплоемкость и теплопроводность газов невысока и колеблется у разных видов.
  8. Вязкость возрастает с увеличением давления и температуры.
  9. Существует два варианта межфазового перехода: испарение - жидкость превращается в пар, сублимация - твердое вещество, минуя жидкое, становится газообразным.

Отличительная особенность паров от истинных газов в том, что первые при определенных условиях способны перейти в жидкость или твердую фазу, а вторые нет. Также следует заметить способность рассматриваемых соединений сопротивляться деформациям и быть текучими.

Подобные свойства газообразных веществ позволяют широко применять их в самых различных областях науки и техники, промышленности и народном хозяйстве. К тому же конкретные характеристики являются для каждого представителя строго индивидуальными. Мы же рассмотрели лишь общие для всех реальных структур особенности.

Сжимаемость

При разных температурах, а также под влиянием давления газы способны сжиматься, увеличивая свою концентрацию и снижая занимаемый объем. При повышенных температурах они расширяются, при низких - сжимаются.

Под действием давления также происходят изменения. Плотность газообразных веществ увеличивается и, при достижении критической точки, которая для каждого представителя своя, может наступить переход в другое агрегатное состояние.

Основные ученые, внесшие вклад в развитие учения о газах

Таких людей можно назвать множество, ведь изучение газов - процесс трудоемкий и исторически долгий. Остановимся на самых известных личностях, сумевших сделать наиболее значимые открытия.

  1. в 1811 году сделал открытие. Неважно, какие газы, главное, что при одинаковых условиях их в одном объеме их содержится равное количество по числу молекул. Существует рассчитанная величина, имеющая название по фамилии ученого. Она равна 6,03*10 23 молекул для 1 моль любого газа.
  2. Ферми - создал учение об идеальном квантовом газе.
  3. Гей-Люссак, Бойль-Мариотт - фамилии ученых, создавших основные кинетические уравнения для расчетов.
  4. Роберт Бойль.
  5. Джон Дальтон.
  6. Жак Шарль и многие другие ученые.

Строение газообразных веществ

Самая главная особенность в построении кристаллической решетки рассматриваемых веществ, это то, что в узлах ее либо атомы, либо молекулы, которые соединяются друг с другом слабыми ковалентными связями. Также присутствуют силы ван-дер-ваальсового взаимодействия, когда речь идет о ионах, электронах и других квантовых системах.

Поэтому основные типы строения решеток для газов, это:

  • атомная;
  • молекулярная.

Связи внутри легко рвутся, поэтому эти соединения не имеют постоянной формы, а заполняют весь пространственный объем. Это же объясняет отсутствие электропроводности и плохую теплопроводность. А вот теплоизоляция у газов хорошая, ведь, благодаря диффузии, они способны проникать в твердые тела и занимать свободные кластерные пространства внутри них. Воздух при этом не пропускается, тепло удерживается. На этом основано применение газов и твердых тел в совокупности в строительных целях.

Простые вещества среди газов

Какие по строению и структуре газы относятся к данной категории, мы уже оговаривали выше. Это те, что состоят из одинаковых атомов. Примеров можно привести много, ведь значительная часть неметаллов из всей периодической системы при обычных условиях существует именно в таком агрегатном состоянии. Например:

  • фосфор белый - одна из данного элемента;
  • азот;
  • кислород;
  • фтор;
  • хлор;
  • гелий;
  • неон;
  • аргон;
  • криптон;
  • ксенон.

Молекулы этих газов могут быть как одноатомными (благородные газы), так и многоатомными (озон - О 3). Тип связи - ковалентная неполярная, в большинстве случаев достаточно слабая, но не у всех. Кристаллическая решетка молекулярного типа, что позволяет этим веществам легко переходить из одного агрегатного состояния в другое. Так, например, йод при обычных условиях - темно-фиолетовые кристаллы с металлическим блеском. Однако при нагревании сублимируются в клубы ярко-фиолетового газа - I 2 .

К слову сказать, любое вещество, в том числе металлы, при определенных условиях могут существовать в газообразном состоянии.

Сложные соединения газообразной природы

Таких газов, конечно, большинство. Различные сочетания атомов в молекулах, объединенные ковалентными связями и ван-дер-ваальсовыми взаимодействиями, позволяют сформироваться сотням различных представителей рассматриваемого агрегатного состояния.

Примерами именно сложных веществ среди газов могут быть все соединения, состоящие из двух и более разных элементов. Сюда можно отнести:

  • пропан;
  • бутан;
  • ацетилен;
  • аммиак;
  • силан;
  • фосфин;
  • метан;
  • сероуглерод;
  • сернистый газ;
  • бурый газ;
  • фреон;
  • этилен и прочие.

Кристаллическая решетка молекулярного типа. Многие из представителей легко растворяются в воде, образуя соответствующие кислоты. Большая часть подобных соединений - важная часть химических синтезов, осуществляемых в промышленности.

Метан и его гомологи

Иногда общим понятием "газ" обозначают природное полезное ископаемое, которое представляет собой целую смесь газообразных продуктов преимущественно органической природы. Именно он содержит такие вещества, как:

  • метан;
  • этан;
  • пропан;
  • бутан;
  • этилен;
  • ацетилен;
  • пентан и некоторые другие.

В промышленности они являются очень важными, ведь именно пропан-бутановая смесь - это бытовой газ, на котором люди готовят пищу, который используется в качестве источника энергии и тепла.

Многие из них используются для синтеза спиртов, альдегидов, кислот и прочих органических веществ. Ежегодное потребление природного газа исчисляется триллионами кубометров, и это вполне оправданно.

Кислород и углекислый газ

Какие вещества газообразные можно назвать самыми широко распространенными и известными даже первоклассникам? Ответ очевиден - кислород и углекислый газ. Ведь это они являются непосредственными участниками газообмена, происходящего у всех живых существ на планете.

Известно, что именно благодаря кислороду возможна жизнь, так как без него способны существовать только некоторые виды анаэробных бактерий. А углекислый газ - необходимый продукт "питания" для всех растений, которые поглощают его с целью осуществления процесса фотосинтеза.

С химической точки зрения и кислород, и углекислый газ - важные вещества для проведения синтезов соединений. Первый является сильным окислителем, второй чаще восстановитель.

Галогены

Это такая группа соединений, в которых атомы - это частицы газообразного вещества, соединенные попарно между собой за счет ковалентной неполярной связи. Однако не все галогены - газы. Бром - это жидкость при обычных условиях, а йод - легко возгоняющееся твердое вещество. Фтор и хлор - ядовитые опасные для здоровья живых существ вещества, которые являются сильнейшими окислителями и используются в синтезах очень широко.

>> Химия: Простые вещества - неметаллы

Неметаллы - это химические элементы, которые образуют в свободном виде простые вещества, не обладающие физическими свойствами металлов. Из 109 химических элементов 87 относятся к металлам, 22 являются неметаллами.

6. Относительность деления простых веществ на металлы и неметаллы.

Рассмотрите этимологию названий отдельных благородных металлов.

Почему химически неверно поэтическое выражена: «В воздухе пахло грозой»?

Запишите схемы образования молекул: Nа2, Вr2, О2, N2. Каков тип связи в этих молекулах?

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Тест по теме "Газообразные, твердые, жидкие вещества"

Тест разработан для обучающихся 11 классов в двух вариантах. Рассчитан на 15 минут, каждый обучающийся получает тест в распечатанном виде.

Цель: проверить знания обучающихся по теме " Газообразные, твердые, жидкие вещества ", умение находить логическое объяснение фактам, исходя из взаимосвязи: применение - свойства - строение.

Вариант 1

1.Не существует агрегатное состояние вещества

А) газообразное Б) жидкое В) твердое Г) аморфное

2.В каком состоянии вещества его молекулы расположены на расстояниях, сравнимых с размерами самих молекул, и перемещаются свободно друг относительно друга.

А) жидком Б) твердом В) газообразном Г) в любом из этих состояний.

3. Переход вещества из жидкого в газообразное

4. Для обнаружения кислорода можно использовать:

А) бромную воду Б) тлеющую лучинку В) хлороводород Г) известковую воду

5. 6 . Тип кристаллической решетки веществ, существующих при обычных условиях в твердом состоянии:

А) ионная Б) молекулярная В) атомная Г) все ответы верны.

6. Каковы общие свойства жидкостей?

А) наличие у них собственного объема и текучести. Б) обладание собственным объемом и формой.

В) отсутствие собственного объема и формы. Г) трудность изменения объема и формы.

7. В отличии от кристаллических аморфные вещества

А) имеют определенную температуру плавления Б) через некоторое время меняют форму

В) не имеют определенной температуры плавления Г) твердые

8.Аллотропными видоизменениями кислорода являются

А) кислород и азот Б) кислород и воздух В) кислород и озон Г) воздух и озон

9. Какой газ приводит к возникновению парникового эффекта?

А) аммиак Б) озон В) углекислый газ Г) серный ангидрид

10. Массовая доля воды в живых организмах равна:

А) 90-95% Б) 50-60% В) 70-80%. Г) 25-40%.

11. Водород в промышленности применяют:

A) в качестве топлива на теплоэлектроцентралях. Б) для получения тугоплавких металлов из их оксидов.

B) для получения серной кислоты. Г) для рафинирования подсолнечного масла.

12. Укажите верное высказывание: «кислород …

А) самый легкий газ Б) хорошо растворим в воде В) бесцветный газ, без вкуса и запаха Г) горит

13. Аморфным веществом является:

А) поваренная соль. Б) шоколад. В) сода Г) натриевая селитра.

14.Водород получают в лаборатории по реакции:

А) 2 H 2 O = 2 H 2 + O 2 Б) 2 Na + 2 H 2 O = H 2 + 2 Na OH В) Zn + 2 HCI = Zn CI 2 + H 2 Г) все ответы верны

15.

A) очищению воды Б) загрязнению воды B) насыщению воды кислородом

Г) насыщению воды углекислым газом

16.Углекислый газ не применяют для

А) изготовления шипучих напитков Б) наполнения воздушных шариков В) изготовления «сухого льда»

Г) тушения пожаров

17. Газ, имеющий наименьшую относительную молекулярную массу:

А) аммиак Б) углекислый газ В) озон Г) этилен.

18. Временную жесткость воды можно устранить:

А) кипячением Б) добавлением карбоната натрия B)добавлением известкового молока Г)все ответы верны.

19. Утверждение, несправедливое для всех твердых веществ:

A) не обладают текучестью Б) размер промежутков между частицами меньше размера самих частиц.

В) не имеют своей формы Г) имеют низкую температуру плавления

20. Соотнесите газы и их физические характеристики

А) О 3 1) поддерживает горение

Б) Н 2 2) едкий запах

В) N Н 3 3) сиреневый цвет

Г) О 2 4) взрывоопасен

21. На сколько граммов масса 1 л озона больше массы 1 л кислорода?

Ответ: ________

Вариант 2

1.Причина нахождения вещества в газообразном состоянии

А) растояние между частицами Б) размеры частиц В) природа вещества Г) все ответы верны.

2. Тип кристаллической решетки веществ, существующих при обычных условиях вгазообразном состоянии:

А) атомная Б) ионная В) молекулярная Г) металлическая.

3.Молярный объем газов

А) 22,4 л/моль Б) 22,4 м/кмоль В) 22,4 мл/моль Г) все ответы верны

4. Водные ресурсы Земли составляет:

A) только пресная вода Б) пресная и соленая вода B)только соленая вода Г) подземные воды.

5. Какими общими свойствами обладают твердые тела?

А) собственным объемом и изменчивостью формы Б) собственным объемом и формой.

В) собственной формой и легко изменяемым объемом.

6. Переход вещества из газообразного в жидкое

А) диффузия Б) конденсация В) испарение Г) кипение

7.В каком состоянии вещества его молекулы сближены на расстояния, меньшие размеров самих молекул, сильно взаимодействуют и остаются на одних и тех же местах, лишь совершая около них колебания?

А) жидком. Б) твердом. В) газообразном. Г) в любом из этих состояний.

8.Укажите неверное высказывание: «водород …

А) самый легкий газ Б) поддерживает горение В) бесцветный газ, без вкуса и запаха Г) горит

9. Доля пресной воды на Земле

А) 12% Б) 2,8% В) 97,2% Г) 0,3%

10. Утверждение, несправедливое для жидкостей:

A) малосжимаемы Б) текучи В) не имеют своей формы.

Г) в условиях невесомости принимают форму шара или капли.

12. Воздух – это …

А) простое вещество Б) сложное вещество

В) смесь газов: O 2 – 21%, N 2 -78% Г) O 2

13. Круговорот воды в природе способствует:

A) загрязнению воды Б) насыщению воды углекислым газом

B) насыщению воды кислородом Г) очищению воды.

14.Гремучий газ состоит из смеси водорода и кислорода в соотношении

А) 1:2 Б) 1:1 В) 2:1 Г) 2:2

15. Газы, которые способом вытеснения воздуха собирают в сосуд, расположенный вверх дном:

A) аммиак и кислород. Б) метан и водород.

B) этилен и углекислый газ Г) озон и угарный газ.

16. Постоянную жесткость воды можно устранить:

A) добавлением соляной кислоты Б) добавлением раствора гидроксида калия

B) добавлением раствора карбоната натрия Г) кипячением.

17. Вещество, которое при определенных условиях может быть и кристаллическим и аморфным

А) сера Б) мел В) сода Г) поваренная соль

18. Кислород получают в лаборатории по реакции:

А) 2 H 2 O 2 = 2 H 2 О + O 2 Б) 2 KCIO 3 + 2 H 2 O = 3 O 2 + 2 KCI

В) 2 KMnO 4 = K 2 MnO 4 + MnO 2 + O 2 Г) все ответы верны

19. Газ, имеющий наибольшую относительную молекулярную массу:

А) аммиак Б) кислород В) озон Г) угарный газ

20. Соотнесите газы и способы их распознавания

А) СО 2 1) посинение лакмусовой бумажки

Б) Н 2 2) помутнение известковой воды

В) N Н 3 3) вспыхивание тлеющей лучинки

Г) О 2 4) «лающий» звук при поджигании

21.Во сколько раз масса 1 л озона больше массы 1 л кислорода?

Ответ: ________

АЗ. В ряду галогенов Р - С1 - Вг -1 слева направо элект­ роотрицательность:

а) увеличивается б) уменьшается в) не изменяется

г) сначала увеличивается, затем уменьшается

А4. В ряду элементов С - N - О - Р электроотрицатель­ ность:

а) наибольшая для фтора б) наименьшая для фтора

в) не меняется г) изменяется периодически

А5. Электроотрицательность в ряду элементов с элект­ ронными конфигурациями...2 s 1 - ...2 s 2 s 2 2р4- ...2 s 2 2р5: а) растет б) уменьшается в) не изменяется г) сначала увеличивается, затем уменьшается

А6. Электроотрицательность элементов возрастает сле­ ва направо в ряду:

а) Н, С, N, О б)С, Li, Ве, В в)Р, Si, А1,Мg г)F, С1,Вг, I

А7. Электроотрицательность элементов сначала растет, а затем уменьшается в ряду:

а) О, F, С б) Н, Nа, N в)С1,Вг, I г)Nа, Са, А1

А8. Ионная связь образуется:

а) между элементами с одинаковой электроотрицательностью за счет образования общих электронных пар

б) если электроотрицательность элементов резко-разли­чается

в) если электроотрицательность элементов различается незначительно

г) электроотрицательность не имеет значения

А9. Химическая связь в молекуле хлороводорода:

а) ионная б) металлическая в) ковалентная неполярная

г) ковалентная полярная

А10. Химическая связь какого типа возникает между ще­лочными металлами и галогенами:

а) металлическая б) ионная в) ковалентная полярная г) ковалентная

АИ. Укажите ковалентную полярную связь:

а)Н-Н б) С1-С1 в) N а-С1 г) С-С1

А12. Укажите символ элемента, атом которого может об­разовать ионную и металлическую связи:

а) К б) О в)С1 г) Si

А13. Химическая связь образована двумя общими элект­ронными парами в молекуле:

а)Н2 б)02 в) N 2 г)С12

А14. Химическая связь в молекуле азота:

а)тройная б)двойная в)простая г)полуторная

А15. Ионная и ковалентная полярная химические связи имеются в веществе:

а) SiO 2 б) КОН в) N аС1 г)С12

А16. Наиболее прочная химическая связь в соединении: а)02 б)Н2 в) N 2 г)НВг

А17. В каком случае общие электронные пары в химичес­кой связи смещены к кислороду:

а) СО б)О F 2 в)02 г)03

А18. Определите, в каком ряду во всех веществах все свя­зи ковалентные полярные:

а)02,К1, N 2 б)НС1,СН4, N Н3 в) Н2О, КОН, РН3 г) А1, N аС1, СаСО3

А19. Укажите, электронные орбитали какого типа пере­крываются при образовании молекулы хлороводо-рода: а) 8 ир б)рир в) 8 И 8 Г) 8 И д

А20. Определите, в какой - молекуле все связи о-типа:

а)К2 б)Н2О в) С2Н4 г)С6Н6

А21. Укажите молекулу с двумя я-связями:

а) С2Н5ОН б) С2Н2 в)СН4 г)С2Н4

А22. Между атомами элементов с порядковыми номерами 11 и 17 образуется химическая связь: а) металлическая б) ионная в) ковалентная неполярная

г) ковалентная полярная

А23. Молекула оксида углерода (IV ) содержит связи:

а) 1о> и 1л б) 2с и 2к в) 1а и 2п г) 2а и 1л

А24. Укажите соединение, в котором ковалентная связь между атомами образуется по донорно-акцепторному механизму:

а)КС1 б)Ш4С1 в) СН3С1 г)М8С12

А25. Определите, между молекулами какого вещества возможно образование водородных связей:

а) СН3ОН б) СН2О в) С2Н4 г)Н2

А26. Кристаллическую решетку атомного типа имеет:

а) ромбическая сера б) белый фосфор в) кислород г) кремнезем

А27. Молекулярную решетку имеют вещества с химичес­кой связью:

а) ковалентной полярной б) ионной в) металлической

г) с любым типом связи

А28. Тип кристаллической решетки вещества, образован­ ного металлом и галогеном:

а) атомная б) молекулярная в) ионная г) атомно-ионная (металлическая)

А29. Железо имеет кристаллическую решетку:

а) металлическую б) молекулярную в) ионную г) атомную

АЗО. Самую высокую температуру кипения имеет:

а) медь б) белый фосфор в) карбонат кальция г)хлороводород

А31. Тип кристаллической решетки вещества, которое хо­ рошо проводит электрический ток, пластично, не прозрачно:

а) атомная б) металлическая в)ионная г) молекулярная

А32. Наибольшую температуру плавления имеет вещест­ во, формула которого:

а) РЬ б)СН4 в) 5Ю2 г)КР

АЗЗ. Укажите ряд, в котором слева направо возрастает температура плавления веществ:

а)НС1-Н2О-МаС1 б) Н2О - Ре - К2 в)КР-А1-Вг2 г)Н2-Ш-СН4

А34. Определите, у какого вещества при обычных усло­виях структурными единицами являются ионы:

а) вода б) кислород в) железо г) поваренная соль

А35. Укажите ряд, в котором прочность ионной связи уве­личивается слева направо:

б)МаС1-СаС12-А1С13 в) СаСО3 - КС1 - СаС12 г)1ЛС1-КаС1-КС1

81. Какая химическая связь существует между атомами в соединении 1ЧН3? (Название типа связи запишите в именительном падеже .)

82. К атомам какого элемента смещены общие электронные пары в соединении ОР2? (В ответе укажите название элемента в именительном падеже.)

83. За счет электронов какого энергетического уровня осуществляется связь в соединении N2? (Укажите номер уровня арабской цифрой.)

84. Укажите число а-связей, существующих в молекуле толуола. (Ответ запишите арабской цифрой).

85. Запишите формулу вещества, в молекулах которого наиболее полярные химические связи: хлор, хлорид калия, хлороводород.

86. Какие орбитали участвуют в образовании химичес­кой связи в молекуле фтороводорода? (В ответе запи­шите буквенные обозначения орбиталей в порядке появления их на энергетическом уровне и без про­белов.)

87. Атомы каких элементов второго периода могут обра­зовать водородную связь? (В ответе запишите химич«ские знаки элементов в порядке возрастания их атомных номеров без пробелов.)

88. Некоторое вещество при обычных условиях являет­ся газом, который образует двухатомные молекулы. Переход этого вещества в твердое состояние про­исходит при температуре ниже -210 °С. Какой тип кристаллической решетки образует это вещество в
твердом состоянии? (Название типа решетки запи­шите в именительном падеже.)

89. Кристаллическая решетка какого типа имеется у вещества, если оно хорошо растворимо в воде, имеет высокую температуру плавления и кипения? (Название типа решетки запишите в именительном падеже.)

Вещества, в котором составляющие его атомы и молекулы почти свободно и хаотически движутся в промежутках между столкновениями, во время которых происходит резкое изменение характера их движения. Французское слово gaz образовано от греческого «хаос». Газообразное состояние вещества является самым распространенным состоянием вещества Вселенной. Солнце, звезды, облака межзвездного вещества, туманности, атмосферы планет состоят из газов, или нейтральных, или ионизованных (плазмы). Газы широко распространены в природе: они образуют атмосферу Земли, в значительных количествах содержатся в твердых земных породах, растворены в воде океанов, морей и рек. Встречающиеся в природных условиях газы представляют собой, как правило, смеси химически индивидуальных газов.

Газы равномерно заполняют доступное для них пространство, и в отличие от жидкостей и твердых тел, не образуют свободной поверхности. Они оказывают давление на ограничивающую заполняемое ими пространство оболочку. Плотность газов при нормальном давлении на насколько порядков меньше плотности жидкостей. В отличие от твердых тел и жидкостей, объем газов существенно зависит от давления и температуры.

Свойства большинства газов - прозрачность, бесцветность и легкость - затрудняло их изучение, поэтому физика и химия газов развивались медленно. Только в 17 в. было доказано, что воздух обладает весом (Э. Торричелли и Б. Паскаль). Тогда же Я. ван Гельмонт ввел термин газы для обозначения воздухоподобных веществ. И только к середине 19 в. были установлены основные закономерности, которым подчиняются газы. К ним относятся закон Бойля - Мариотта , закон Шарля , закон Гей-Люссака , закон Авогадро .

Наиболее полно изучены были свойства достаточно разряженных газов, в которых расстояния между молекулами при нормальных условиях порядка 10 нм, что значительно больше радиуса действия сил межмолекулярного взаимодействия . Такой газ, молекулы которого рассматриваются как невзаимодействующие материальные точки, называется идеальным газом . Идеальные газы строго подчиняются законам Бойля - Мариотта и Гей-Люссака. Практически все газы ведут себя как идеальные при не слишком высоких давлениях и не слишком низких температурах.

Молекулярно-кинетическая теория газов рассматривает газы как совокупность слабо взаимодействующих частиц (молекул или атомов), находящихся в непрерывном хаотическом (тепловом) движении. На основе этих простых представлений кинетической теории удается объяснить основные физические свойства газов, особенно полно - свойства разреженных газов. У достаточно разреженных газов средние расстояния между молекулами оказываются значительно больше радиуса действия межмолекулярных сил. Так, например, при нормальных условиях в 1 см 3 газа находится ~ 10 19 молекул и среднее расстояние между ними составляет ~ 10 -6 см. С точки зрения молекулярно-кинетической теории давление газов является результатом многочисленных ударов молекул газа о стенки сосуда, усредненных по времени и по стенкам сосуда. При нормальных условиях и макроскопических размерах сосуда число ударов об 1см 2 поверхности составляет примерно 10 24 в секунду.

Внутренняя энергия идеального газа (среднее значение полной энергии всех его частиц) зависит только от его температуры. Внутренняя энергия одноатомного газа, имеющего 3 поступательные степени свободы и состоящего из N атомов, равна:

При повышении плотности газа его свойства перестают быть идеальными, процессы столкновения начинают играть все большую роль и размерами молекул и их взаимодействия пренебречь уже нельзя. Такой газ называют реальный газ . Поведение реальных газов в зависимости от их температуры, давления, физической природы в большей или меньшей степени отличаются от законов идеальных газов. Одним из основных уравнений, описывающих свойства реального газа, является уравнения Ван-дер-Ваальса , при выводе которого были учтены две поправки: на силы притяжения между молекулами и на их размер.

Любое вещество можно перевести в газообразное состояние соответствующим подбором давления и температуры. Поэтому возможную область существования газообразного состояния графически изображают в переменных: давление р - температура Т (на р-Т -диаграмме). Существует критическая температура Т к, ниже которой эта область ограничена кривыми сублимации (возгонки) и парообразования, т. е. при любом давлении ниже критического р к существует температура Т , определяемая кривой сублимации или парообразования, выше которой вещество становится газообразным. При температурах ниже Т к можно сконденсировать газ - перевести его в другое агрегатное состояние (твердое или жидкое). При этом фазовое превращение газа в жидкость или твердое тело происходит скачкообразно: незначительное изменение давления приводит к изменению ряда свойств вещества (например, плотности, энтальпии , теплоемкости и др.). Процессы конденсации газов, особенно сжижение газов , имеют важное техническое значение.

Область газового состояния вещества очень обширна, и свойства газов при изменении температуры и давления могут меняться в широких пределах. Так, в нормальных условиях (при 0°С и атмосферном давлении) плотность газа примерно в 1000 раз меньше плотности того же вещества в твердом или жидком состоянии. С другой стороны, при высоких давлениях вещество, которое при сверхкритических температурах можно считать газом, обладает огромной плотностью (например, в центре некоторых звезд ~10 9 г/см 3).

Внутреннее строение молекул газа слабо влияет на давление, температуру, плотность и связь между ними, но существенным образом влияет на его электрические и магнитные свойства. Калорические свойства газов, такие как теплоемкость, энтропия и т. д., также зависят от внутреннего строения молекул.

Электрические свойства газов определяются возможностью ионизации молекул или атомов, т. е. появлением в газе электрически заряженных частиц (ионов и электронов). При отсутствии заряженных частиц газы являются хорошими диэлектриками. С ростом концентрации зарядов электропроводность газов увеличивается. При температурах выше нескольких тысяч К газ частично ионизуется и превращается в плазму.

По магнитным свойствам газы делятся на диамагнитные (инертные газы, СО 2 , Н 2 О) и парамагнитные (О 2). Молекулы диамагнитных газов не имеют постоянного магнитного момента и приобретают его лишь под действием магнитного поля. Те газы, молекулы которых обладают постоянным магнитным моментом, ведут себя как парамагнетики.

В современной физике газами называют не только одно из агрегатных состояний вещества. К газам с особыми свойствами относят, например, совокупность свободных электронов в металле (электронный газ), фононов в кристалле (фононный газ). Свойства таких газовых частиц описывает